Electrical Fundamentals

		Level			
	Α	B1	B2	B3	
3.1 Electron Theory Structure and distribution of electrical charges within: atoms, molecules, ions, compounds; Molecular structure of conductors, semiconductors and insulators.	1	1	1	1	
3.2 Static Electricity and Conditions Static electricity and distribution of electrostatic charges; Electrostatic laws of attraction and repulsion; Units of charge, Coulomb's Law; Conduction of electricity in solids, liquids, gases and a vacuum.	1	2	2	1	
3.3 Electrical Terminology The following terms, their units and factors affecting them: potential difference, electromotive force, voltage, current, resistance, conductance, charge, conventional current flow, electron flow.	1	2	2	1	
3.4 Generation of Electricity Production of electricity by the following methods: light, heat, friction, pressure, chemical action, magnetism and motion.	1	1	1	1	
3.5 DC Sources of Electricity Construction and basic chemical action of: primary cells, secondary cells, lead acid cells, nickel cadmium cells, other alkaline cells; Cells connected in series and parallel; Internal resistance and its effect on a battery; Construction, materials and operation of thermocouples; Operation of photo-cells.	1	2	2	2	

Electrical Fundamentals

Calculations involving power, work and

energy.

3.6 DC Circuits Ohms Law, Kirchoff's Voltage and Current Laws; Calculations using the above laws to find resistance, voltage and current; Significance of the internal resistance of a supply.	-	2	2	1
3.7 Resistance/Resistor				
(a) Resistance and affecting factors; Specific resistance; Resistor colour code, values and tolerances, preferred values, wattage ratings; Resistors in series and parallel; Calculation of total resistance using series, parallel and series parallel combinations; Operation and use of potentiometers and rheostats; Operation of Wheatstone Bridge;	-	2	2	1
(b) Positive and negative temperature coefficient conductance; Fixed resistors, stability, tolerance and limitations, methods of construction; Variable resistors, thermistors, voltage dependent resistors; Construction of potentiometers and rheostats; Construction of Wheatstone Bridge.	-	1	1	-
3.8 Power	-	2	2	1
Power, work and energy (kinetic and potential); Dissipation of power by a resistor; Power formula;				

Electrical Fundamentals

3.9 Capacitance/Capacitor - 2 2 2

Operation and function of a capacitor;

Factors affecting capacitance area of plates, distance between plates, number of plates, dielectric and dielectric constant, working voltage, voltage rating;

Capacitor types, construction and function;

Capacitor colour coding;

Calculations of capacitance and voltage in series and parallel circuits;

Exponential charge and discharge of a capacitor, time constants;

Testing of capacitors

3.10 Magnetism

- (a) Theory of magnetism; Properties of a magnet; Action of a magnet suspended in the Earth's magnetic field;
 Magnetisation and demagnetisation;
 Magnetic shielding; Various types of magnetic material; Electromagnets construction and principles of operation; Hand clasp rules to determine: magnetic field around current carrying conductor;
- (b) Magnetomotive force, field strength, magnetic flux density, permeability, hysteresis loop, retentivity, coercive force reluctance, saturation point, eddy currents; Precautions for care and storage of magnets

2

1

2

- 2 2 1

Electrical Fundamentals

2 2 3.11 Inductance/Inductor Faraday's Law; Action of inducing a voltage in a conductor moving in a magnetic field; Induction principles; Effects of the following on the magnitude of an induced voltage: magnetic field strength, rate of change of flux, number of conductor turns: Mutual induction; The effect the rate of change of primary current and mutual inductance has on induced voltage; Factors affecting mutual inductance: number of turns in coil, physical size of coil, permeability of coil, position of coils with respect to each other; Lenz's Law and polarity determining rules; Back emf, self induction; Saturation point; Principle uses of inductors. 2 2 1 3.12 DC Motor/Generator Theory Basic motor and generator theory; Construction and purpose of components in DC generator; Operation of, and factors affecting output and direction of current flow in DC generators: Operation of, and factors affecting output power, torque, speed and direction of rotation of DC motors; Series wound, shunt wound and compound motors: Starter Generator construction. 2 2 1 3.13 AC Theory Sinusoidal waveform: phase, period, frequency, cycle; Instantaneous, average, root mean square, peak, peak to peak current values and calculations of these values, in relation to voltage, current and power; Triangular/Square waves; Single/3 phase principles

Electrical Fundamentals

Single phase, two phase and three phase alternators; Three phase star and delta connections advantages and uses; Permanent Magnet Generators

Lieumaniem	ais			
		_	_	
3.14 Resistive (R), Capacitive (C) and	-	2	2	1
Inductive (L) Circuits				
Phase relationship of voltage and current in L, C and R circuits, parallel, series and				
series parallel;				
Power dissipation in L, C and R circuits;				
Impedance, phase angle, power factor and current calculations;				
True power, apparent power and reactive power calculations.				
3.15 Transformers	_	2	2	1
Transformer construction principles and		_	_	•
operation;				
Transformer losses and methods for overcoming them;				
Transformer action under load and no-load conditions;				
Power transfer, efficiency, polarity markings;				
Calculation of line and phase voltages and currents;				
Calculation of power in a three phase system;				
Primary and Secondary current, voltage, turns ratio, power, efficiency;				
Auto transformers.				
3.16 Filters	-	1	1	-
Operation, application and uses of the following filters: low pass, high pass, band pass, band stop				
3.17 AC Generators	_	2	2	1
Rotation of loop in a magnetic field and		_	_	•
waveform produced;				
Operation and construction of revolving armature and revolving field type AC generators;				

Electrical Fundamentals

3.18 AC Motors - 2 2 1

Construction, principles of operation and characteristics of: AC synchronous and induction motors both single and polyphase;

Methods of speed control and direction of rotation; Methods of producing a rotating field: capacitor, inductor, shaded or split pole.